1. 首页 > 主机杂谈 > 正文

如何在Linux服务器上部署DeepSeek模型

在Linux服务器上部署DeepSeek模型(假设为AI大模型,如DeepSeek-R1或类似模型)的完整流程如下:

一、环境准备

1. 硬件要求

GPU:推荐NVIDIA GPU(如A100/V100),安装对应驱动(nvidia-smi验证)

显存:根据模型规模调整(如7B模型需16GB+显存)

内存:建议32GB+ RAM

存储:预留模型文件空间(如7B模型约15GB)

2. 系统依赖

# 更新系统
sudo apt update && sudo apt upgrade -y

# 安装基础工具
sudo apt install -y python3-pip git curl wget unzip build-essential

# 安装CUDA Toolkit(以CUDA 12.1为例)
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv –fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository “deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /”
sudo apt install -y cuda-toolkit-12-1

二、Python环境配置

1. 创建虚拟环境

# 安装conda(如未安装)
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

# 创建环境
conda create -n deepseek python=3.10
conda activate deepseek

2. 安装PyTorch

pip3 install torch torchvision torchaudio –index-url https://download.pytorch.org/whl/cu121

三、获取DeepSeek模型

1. 下载模型文件

# 从Hugging Face或官方仓库下载(需授权)
git lfs install
git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-base

2. 安装模型依赖库

pip install transformers>=4.35.0 accelerate sentencepiece
# 如需量化支持
pip install bitsandbytes

四、部署推理服务

1. 编写推理脚本(inference.py)

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_path = “./deepseek-llm-7b-base”
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map=”auto”
)

def generate(prompt):
inputs = tokenizer(prompt, return_tensors=”pt”).to(“cuda”)
outputs = model.generate(**inputs, max_new_tokens=512)
return tokenizer.decode(outputs[0], skip_special_tokens=True)

if __name__ == “__main__”:
print(generate(“如何部署AI模型?”))

2. 启动API服务(使用FastAPI)

pip install fastapi uvicorn

创建api.py:

from fastapi import FastAPI
from pydantic import BaseModel
from inference import generate

app = FastAPI()

class Request(BaseModel):
prompt: str

@app.post(“/generate”)
async def generate_text(request: Request):
result = generate(request.prompt)
return {“response”: result}

启动服务:

uvicorn api:app –host 0.0.0.0 –port 8000 –workers 1

五、容器化部署(可选)

1. 编写Dockerfile

FROM nvidia/cuda:12.1.1-base-ubuntu22.04
RUN apt update && apt install -y python3-pip git
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD [“uvicorn”, “api:app”, “–host”, “0.0.0.0”, “–port”, “8000”]

2. 构建并运行容器

docker build -t deepseek-api .
docker run –gpus all -p 8000:8000 deepseek-api

六、测试与优化

1. 测试API

2. 性能优化

量化加载(减少显存占用):

model = AutoModelForCausalLM.from_pretrained(
model_path,
load_in_4bit=True, # 4位量化
device_map=”auto”
)

启用Flash Attention:

pip install flash-attn –no-build-isolation

七、生产环境增强

反向代理(Nginx配置)

server {
listen 80;
server_name api.yourdomain.com;
location / {
proxy_pass http://localhost:8000;
}
}

监控:集成Prometheus + Grafana

日志管理:使用logging模块或ELK Stack

常见问题排查

CUDA Out of Memory:减小max_new_tokens或启用量化

依赖冲突:使用pip freeze > requirements.txt固定版本

端口占用:lsof -i :8000检查并终止进程

按照以上步骤即可完成部署。根据实际需求调整模型参数和硬件资源配置。

本文由网上采集发布,不代表我们立场,转载联系作者并注明出处:http://www.tuihost.com/10893.html

联系我们

在线咨询:点击这里给我发消息

微信号:17713241060

工作日:9:30-18:30,节假日休息