在Linux服务器上部署DeepSeek模型(假设为AI大模型,如DeepSeek-R1或类似模型)的完整流程如下:
一、环境准备
1. 硬件要求
GPU:推荐NVIDIA GPU(如A100/V100),安装对应驱动(nvidia-smi验证)
显存:根据模型规模调整(如7B模型需16GB+显存)
内存:建议32GB+ RAM
存储:预留模型文件空间(如7B模型约15GB)
2. 系统依赖
# 更新系统
sudo apt update && sudo apt upgrade -y
# 安装基础工具
sudo apt install -y python3-pip git curl wget unzip build-essential
# 安装CUDA Toolkit(以CUDA 12.1为例)
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv –fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository “deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /”
sudo apt install -y cuda-toolkit-12-1
二、Python环境配置
1. 创建虚拟环境
# 安装conda(如未安装)
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
# 创建环境
conda create -n deepseek python=3.10
conda activate deepseek
2. 安装PyTorch
pip3 install torch torchvision torchaudio –index-url https://download.pytorch.org/whl/cu121
三、获取DeepSeek模型
1. 下载模型文件
# 从Hugging Face或官方仓库下载(需授权)
git lfs install
git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
2. 安装模型依赖库
pip install transformers>=4.35.0 accelerate sentencepiece
# 如需量化支持
pip install bitsandbytes
四、部署推理服务
1. 编写推理脚本(inference.py)
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_path = “./deepseek-llm-7b-base”
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map=”auto”
)
def generate(prompt):
inputs = tokenizer(prompt, return_tensors=”pt”).to(“cuda”)
outputs = model.generate(**inputs, max_new_tokens=512)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
if __name__ == “__main__”:
print(generate(“如何部署AI模型?”))
2. 启动API服务(使用FastAPI)
pip install fastapi uvicorn
创建api.py:
from fastapi import FastAPI
from pydantic import BaseModel
from inference import generate
app = FastAPI()
class Request(BaseModel):
prompt: str
@app.post(“/generate”)
async def generate_text(request: Request):
result = generate(request.prompt)
return {“response”: result}
启动服务:
uvicorn api:app –host 0.0.0.0 –port 8000 –workers 1
五、容器化部署(可选)
1. 编写Dockerfile
FROM nvidia/cuda:12.1.1-base-ubuntu22.04
RUN apt update && apt install -y python3-pip git
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD [“uvicorn”, “api:app”, “–host”, “0.0.0.0”, “–port”, “8000”]
2. 构建并运行容器
docker build -t deepseek-api .
docker run –gpus all -p 8000:8000 deepseek-api
六、测试与优化
1. 测试API
2. 性能优化
量化加载(减少显存占用):
model = AutoModelForCausalLM.from_pretrained(
model_path,
load_in_4bit=True, # 4位量化
device_map=”auto”
)
启用Flash Attention:
pip install flash-attn –no-build-isolation
七、生产环境增强
反向代理(Nginx配置)
server {
listen 80;
server_name api.yourdomain.com;
location / {
proxy_pass http://localhost:8000;
}
}
监控:集成Prometheus + Grafana
日志管理:使用logging模块或ELK Stack
常见问题排查
CUDA Out of Memory:减小max_new_tokens或启用量化
依赖冲突:使用pip freeze > requirements.txt固定版本
端口占用:lsof -i :8000检查并终止进程
按照以上步骤即可完成部署。根据实际需求调整模型参数和硬件资源配置。
本文由网上采集发布,不代表我们立场,转载联系作者并注明出处:http://www.tuihost.com/10893.html